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Abstract 

In this paper, the truncated two-parameter Lindley (T-TPL) distribution is proposed, 
which is classified as doubly, left and right truncated distributions. Some statistical properties, 

i.e., the moments, and functions of survival, hazard and quantile are also discussed. The 

maximum likelihood estimators are constructed for estimating the unknown parameters of the 
T-TPL distribution. Moreover, the distributions have been fitted with some real data to illustrate 

the efficiency of the T-TPL distribution when it compared to other distributions (i.e., 
exponential, Lindley, two-parameter Lindley, and truncated Lindley distributions). The results 

have shown that the T-TPL distribution gives a reasonable better fit to the real data about 

bladder cancer patients and the flood discharge rates than other distributions. 

 
Keywords: two-parameter Lindley, hazard function, truncated distribution, lifetime data 

 
Introduction 

Truncated distributions are quite effective for using data analysis in various fields, 

including engineering, medicine, finance and demographics, when such types of truncated data 
arise in practical statistics in cases with the opportunity to record, or even when occurrences 

are limited to values which lie above or below a given threshold or within a specified range.  
For example, pH, grades, and humidity in environmental studies have upper and lower physical 

bounds, and their probability distribution functions are not necessarily symmetrical within these 
bounds (Dodge, 2003; Singh et al., 2014).  

 A truncated normal distribution had been derived from the standard normal distribution 

as proposed by Johnson et al. (1994). The truncated normal distributions are applied in many 
practical situations where there is a restriction on the variable under consideration. Several 

studies have considered the various aspects of the truncated normal distributions, i.e., Johnson 
(2001) studied the truncated normal distribution in characteristics of singly and doubly 

truncated populations of application in management science, Iwueze (2007) applied the 

truncated normal distribution to the left at zero is in descr iptive modelling of time 
series data, Sun (2013) introduced the finite fault modelling for the Wenchuan earthquake 

using hybrid slip model with truncated normal distributed source parameters, and Hamasha 
(2017) proposed a mathematical approximation of the left-sided truncated normal distribution 

using the Cadwell an approximation model to data about the life of a television set. Therefore, 

many researchers being attracted to problems of analyzing such truncated data encountered in 
various disciplines, proposed the truncated versions of usual probability distributions. Ahmed et  
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al. (2010) have discussed the application of the truncated version of the Birnbaum-Saunders 
distribution to improve an actuarial forecasting model and particularly for modeling data from 

insurance payments to establish deductibles. For instance, Aban et al. (2006), and Zaninetti & 
Ferraro (2008) have discussed the application of the truncated Pareto distribution to the 

statistical analysis of the masses of stars and the diameters of asteroids. Zhang & Xie (2011) 
have proposed the upper-truncated Weibull distribution and its application about time-to-failure 

of the turbocharger of one type of engine. Recently, Singh et al. (2014) have proposed the 

truncated Lindley distribution and applied its distribution to a set of real data concerning the 
strengths of the glass of aircraft windows. 

 From the above commentary as well as monitoring the wide applicability of the 
truncated distributions, the truncated versions of a two-parameter Lindley (TPL) distribution 

have been proposed as a flexible alternative for analyzing the truncation data range. The TPL 

distribution has been introduced by Shanke et al. (2013), which becomes a lifetime distribution 
by mixing the exponential distribution with a scale parameter   and the gamma distribution 

with the shape parameter 2  and the scale parameter   by using the mixed proportion with 

/ ( )    and
 

/ ( ).    The TPL has been fitted to some data-sets relating to waiting times 

and survival times (i.e., the waiting times of bank customers, the survival times of guinea pigs 

infected with virulent tubercle bacilli, and the mortality grouped data for blackbird species). 
Results based on chi-square test shown that the TPL distribution provides better fits than the 

Lindley distribution. The Lindley distribution (Lindley, 1985) is a mixture of the exponential 
distribution with a scale parameter   and the gamma distribution the shape parameter 2  and 

the scale parameter .  We will find that the TPL has the shape parameter   that makes it 

more flexible to fit the data than the Lindley distribution. 

The rest of the paper has been arranged in the following sections. In methods, the TPL 
distribution and the truncated distribution are introduced. For results of study, a new truncated 

distribution of the TPL distribution is proposed, which is classified as doubly, left and right 
truncated distributions. Particularly, the flexibility of the proposed distribution has been shown 

to demonstrate the characteristics of the probability function with different combinations of the 

values of its parameters. Some statistical properties such as moments, survival, hazard, and 
quantile functions, are also discussed. Moroever, the method of the maximum likelihood 

estimation is applied to obtain the parameter estimate of the proposed distribution. The set of 
real data is modeled through the different distributions to compare the efficiency of the 

proposed distribution and other distributions (i.e., exponential, Lindley, two-parameter Lindley, 
and truncated Lindley distributions). Finally, the conclusions are shown. 

 
Methods 
 Let X  be distributed as the TPL random variable with the shape parameter   and the 

scale parameter ,  which denoted by X ~ TPL( , ),   where the probability density function 

(pdf) and cumulative density function (cdf) of X  (Shanker et al., 2013) are, respectively, 

  
2

f ( ; , ) (1 ) xx x e 
  

 

 


 and F( ; , ) 1 ,xx
x e   
 

 

 
 


                               (1) 

where 0, 0,x   and .    

 It can easily be seen that when 1,   the TPL distribution reduces to the one-

parameter Lindley distribution (Lindley, 1985) and that when 0,   it reduces to the 

exponential distribution (Gutenberg & Richter, 1944). Some plots of the pdf of the TPL are 
shown in Figure 1.  
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Figure 1. Some pdf plots of the TPL distribution with specified parameters   and   

  

 Suppose X  has a parent distribution, which is a continuous random variable, 

,x    with the parameter .  The pdf and c.d.f of X  are f ( ; )x   and F( ; ),x    

respectively. Let T F  where F  is a - field on a real number ,  such that 0 P(X T) 1.    

Then the conditional distribution of X,  i.e., P(X | X T),x   is defined for any x  it is called 

the truncated distribution of X.   We obtain the truncated distribution function with the cdf and 

the pdf of X T  (Dodge, 2003; Singh et al., 2014; Ahsamullah et al., 2016) are given as, 
respectively, 

 ( , ] T

T

f ( ; )
F( ; ,T) P(X | X T) ,

f ( ; )

x
u du

x x
u du

 


    





 and 

 

T

f ( ; )
f ( ; ,T) , T.

f ( ; )

x
x x

u du


  


            (2) 

 Clearly f ( ; ,T)x   defines the pdf of X  with support T,  i.e., T  is not necessarily a 

bounded set of real numbers, since 
T T T
f ( ; ,T) f ( ; ) f ( ; ) 1.x dx x dx u du      

  

 

Let X  is defined on
 

T [ , ],a b  the conditional distribution of X  given that  

,a x b     which is called a doubly truncated distribution on interval [ , ].a b  Then the 

pdf of X  is  

  
f ( ; )

f ( ; , , ) ; .
F( ; ) F( ; )

x
x a b a x b

b a


       

  
                                       (3) 

 If X  be a parent distribution, which is a lifetime distribution with the pdf f ( ; )x   where 

0x   then the doubly truncated distribution of X  on interval [ , ]a b , the equation (3) is 

consideraed in 3 cases. 
 1) When 0a   and ,b    the doubly truncated distribution reduces to the parent 

distribution. 
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 2) When 0a   and ,b  the doubly truncated distribution  reduces to the left 

truncated distribution at ,a  on the other hand, its probability distribution can be derived from 

the parent distributioin by bounding the random variable from above .a  

 3) When 0a   and ,b    the doubly truncated distribution reduces to the right 

truncated distribution at ,b  or its probability distribution can be derived from 

the parent distribution by bounding the random variable from below .b  

 

Results and discussion 
A new truncated distribution 

 A new distribution, namely, a truncated two-parameter Lindley (T-TPL) distribution is 
presented, which is classified as doubly, left and right truncated distributions. Moreover, some 

statistical properties are also discussed. 

 1) Suppose X  has a two-parameter Lindley distribution with the pdf and cdf as in 
equation (1). We obtained the doubly truncated distribution of X  on interval [ , ].a b  It is called 

a doubly truncated two-parameter Lindley (dT-TPL) distribution, which is denoted as X ~dT-

TPL ( , , , ).a b   If f ( ; , )x    and F( ; , )x    in equation (1) are replaced into equation (3) 

respectively, then pdf and cdf of the dT-TPL distribution are, respectively, 
 

 

  

2 (1
; , , ,

)
f ( ) ,

( ) ( )

x

a b

x e

a e b e
x a b



 

 

     
 



 



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                                            (4) 

   
( ) ( )

F( ) .
( ) ( )

; , , ,
x

a b

x e
x

a e e
a

b
b



 

    




    




 

   


    
                                      (5) 

The plots of pdf in equation (4) is shown in Figures 2. 

 

 
Figure 2. Plots of the pdf for the dT-PTL distribution on [ , ]a b  
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 2) For X ~dT-TPL ( , , , ),a b   when ,b  which the distribution of X  is called the left 

truncated two-parameter Lindley distribution, it is denoted as X ~lT-TPL ( , , ),a   then the pdf 

and cdf of X  are respectively 

 
2

( )f ( ) (1 ); , ,, x aax x e
a




  
 



  
 

 and 
( ) ( )

F( ),
( )

; , .
x

a

x e
x

a e
a





    

  
 





   


 
   (6) 

 3) If X ~dT-TPL ( , , , ),a b   and 0,a   then the distribution of X  is called the right 

truncated two-parameter Lindley distribution, it is denoted as X ~rT-TPL ( , , ),b   then the pdf 

and cdf of X  are respectively 

 
 

2 (1 )
f ( ) ,

( )
; , ,

x

b
b

x e
x

b e
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

 

  





 








   
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   
   

F( .; ), ,

x

b

x e
x

b e
b





    

    
 





   


   
  (7) 

 The pdf plots of the lT-TPL and rT-TPL distributions are shown in Figures 3-4, 

respectively.  
 

 
Figure 3. Plots of the pdf for the lT-TPL distribution at a  

 

 If X ~T-TPL ( , , , ),a b   and 1,   then the T-TPL distribution reduces to the truncated 

Lindley (T-Lindley) distribution (Singh et al., 2014) and when 0,   it reduces to the truncated 

exponential (T-Exponential) distribution (Hannon & Dahiya, 1999).  
 

 Moments  
 The factorial moments about the origin of order thk  are provided explicit expressions 

of E(X ),k

k   where k  is a positive integer. This can be used to study the most important 

characteristics of the distribution (e.g., mean, variance, skewness, kurtosis, etc.) 

 

https://www.tandfonline.com/author/Hannon%2C+Patrick+M
https://www.tandfonline.com/author/Dahiya%2C+Ram+C
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Figure 4. Plots of the pdf for the rT-TPL distribution at b  

 

 Theorem 1. If X ~dT-TPL ( , , , )a b   then the thk  moment of X  is 

 
   

   

( 1, ) ( 1, ) ( 2, ) ( 2, )
( ; , , , ) ,k k a b

k b k a k b k a
x a b

a e b e 

     
  

       

      
 

      

       (8) 

1,2,...k   where 1

0

( , )

b

k xk b x e dx     is the lower incomplete gamma function. 

Proof: Using equation (4), let ( , , , ) ( ) ( ) ,a b

a b a e b e 

               one can write  

 
2 2

1
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E(X ) (1 ) .
b b b

k k x k x k x

a a a
a b a b

x x e dx x e dx x e dx  
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 
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 
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    

 
By setting u x  and ,du dx  and based on ( , ),k b  one can write E(X )k  as 

 
 2

1 2

( , , , )

( 2, ) ( 2, )( 1, ) ( 1, )
( ; , , , ) .k k k

a b

k b k ak b k a
x a b

 
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 
 

From Theorem 1, the mean and variance of X  are respectively, 

 

   
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 
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 Theorem 2. If X ~lT-TPL ( , , ),a   then the thk  moment of X  is 
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where 1( , ) k x

a

k a x e dx



     is the upper incomplete gamma function. 

Proof: Using equation (6) and letting  ( , , ) ,a

a a e 

         one can write  
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By setting ,u x  and based on ( , ),k a  the E(X )k  can be written as 
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From Theorem 2, the mean and variance of X  are, respectively, 
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 Theorem 3. If X ~rT-TPL ( , , )b   then the thk  moment of X  is 
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                                    (10) 

where ( , )k b  is the lower incomplete gamma function. 

Proof: Using equation (7) and letting    ( , , ) ,b

b b e 
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By setting u x  and based on

 

( , ),k b  then E(X )k
 is 
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From Theorem 3, the mean and variance of X  are 
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. 

 Survival and hazard functions 
 The survival function, S( ),x  is the probability that a subject survives longer than time 

.x  Suppose X  is a lifetime random variable representing the time until a spectified event of 

interest is  occured, then the survival function of X  is defined as S( ) P(X ) 1 F( ).x x x     From 

the cdf in equation (5), the survival function of the dT-TPL distribution is 
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 Consequently, the ratio of the pdf, f ( ),x  and the survival function, S( ),x  is given by 

h( ) f ( ) S( ),x x x  which is called the hazard function. From the pdf in equation (4) and the 

survival function in equation (11), the hazard function of X  is given by 

 
2 (1 )

h(x) .
( ) ( ) ( ) ( )

x

a t b

x e

a e t e b e



  

 

          



  




         
                     (12) 

 Plots of hazard in equation (12) and survival functions in equation (11) are shown in 

Figure 5. 

 
Figure 5. Plots of the survival and hazard functions for the dT-TPL distribution on [a, ]b  

 Quantile function 
The quantile function is specified by

 
q( )p  as the value at which the probability of the 

random variable is not more than the given probability .p  It is also called the percent-point 

function or inverse cumulative distribution function, i.e.,
1q( ) F ( )p x . We solve this equation by 

using the Lambert-W function (Jorda, 2010), which is a multivalued complex function defined 

as 
( )W( ) W zz e z  where z  is a complex number. From the cdf in equations (5)-(7) and by 

defining / 1,t     the quantile function of  X  are as follows;  

1) For X ~dT-TPL ( , , , ),a b   

  1
q( ) ( ) ( ) .a b tp W p t a e p t b e t e t  



         
                               (13) 

2) For X ~lT-TPL ( , , ),a   

  1
q( ) ( ) .a tp W p t a e t e t



      
 

 

                                               (14) 

3) For X ~rT-TPL ( , , ),b   

 

http://mathworld.wolfram.com/ProbabilityDensityFunction.html
http://mathworld.wolfram.com/SurvivalFunction.html
https://en.wikipedia.org/wiki/Quantile
https://en.wikipedia.org/wiki/Quantile
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  1
q( ) ( ) .b tp W pt p t b e t e t



       
 

 

                                         (15) 

 The generation of a T-TPL random variate 
 The inverse transformation technique is used to generate a random variable for the 

TP2L distribution by setting 1F ( ),i ix u  where u  is a random variable of the uniform 

distribution on (0,1), which denoted as U(0,1).  The LamW package in R (Adler, 2016) is 

employed to solve the Lambert-W function in equations (13)-(15). Then X , 1,2,..., ,i i n  can be 

generated as follows: 

1) Generate , 1,2,...,iu i n  from U(0,1).  

2) Set / 1t    . 

3) Set ,iw  when iw  is { }W z  and can be obtained by using “lambertWm1(z)” in R; 

3.1)  ( ) ( )a b t

i i iw W u t a e u t b e t e         
 

 for dT-TPL ( , , , ),a b   

3.2)  ( ) a t

i iw W u t a e t e     
 

 for lT-TPL ( , , ),a   

3.3)  ( ) b t

i i iw W u t u t b e t e      
 

 for rT-TPL ( , , ).b   

4) Then,  
1

i ix w t


   . 

 The parameter estimation 
 In this section, author describes the procedure to obtain the maximum likelihood 
estimates (MLE) of the parameters of the dT-TPL, as well as, lT-TPL and rT-TPL distributions 

based on the random sample 1 2( , ,..., )nx x x x  of n  observations so that these distributions can 

be effectively used to model real problems depending upon the nature of the data. 

 1) Let X , 1,2,...,i i n  be an iid (independent and identically distributed). The likelihood 

function of X ~dT-TPL ( , , , )a b   on the observed sample x  is given by 

 1

2

1

( , | , , ) (1 )
( ) ( )

n

i

i

n
n x

ia b
i

L x a b x e
a e b e



 


  

     




 


 
   

     
 . 

The corresponding log-likelihood equation, 1 log ( , | , , )L L x a b   for ˆ min( )a x   and 

ˆ max( )b x  is 

 
1

1 1

2 log( ) log[( ) ( ) ] log(1 ) .
n n

a b

i i

i i

L n n a e b e x x          

 

            

 To estimate the unknown parameters   and   from the differentiating of the log-

likelihood function, we obtained the partial derivatives of 1L  with respect to   and  ,  i.e., 

 
2 2

1

1

2 (1 ) (1 )
[ ] ,

( ) ( )

a b n

ia b
i

L n a a e b b e
n x

a e b e

 

 

   

       

 

 


     
  

     
                                     (16) 

 1

1

log(1 ) (1 ) (1 )
[ ].
( ) ( )

a bn
i

a b
i

xL a e b e
n

a e b e

 

 

  

       

 

 


    
 

      
                                (17) 

Similarly, the estimators of the lT-TPL and rT-TPL distributions can be obtained as follows. 
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 2) Let 1 2( , ,..., )nx x x x  be a random sample of size n  from the lT-TPL distribution. The 

log-likelihood function, 2 log ( , | , ),L L x a   of Xi  for 1,2,..., ,i n  and ˆ min( )a x  is 

 
2

1 1

2 log( ) log( ) log(1 ) .
n n

i i

i i

L n n a x x n a      
 

          

Partial derivatives of 2 ,L  this log likelihood function with respect to   and   can be given by 

 2

1

2 (1 )
,

n

i

i

L n n a
x na

a



     

 
   

  
                                                                     (18) 

 2

1

(1 )
log(1 ).

n

i

i

L n a
x

a




    

  
   

   
                                                               (19) 

 3) Let Xi
~rT-TPL ( , , ),b   1,2,...,i n  be an iid random variable. The log-likelihood 

function of Xi  is 3 log ( , | , )L L x b   for ˆ max( )b x  given by 

  3

1 1

2 log( ) log[( ) ] log(1 ) .
n n

b

i i

i i

L n n b e x x       

 

           

Partial derivatives of this log likelihood function with respect to   and   are given by 

 
 

2

3

1

2 [1 (1 ) ]
,

( )

b n

ib
i

L n n b b e
x

b e





 

      






   
  

    
                                                     (20) 

 
 

2

3

1

[1 (1 ) ]
log(1 ).

( )

b n

ib
i

L n b b e
x

b e





 


      






    
   

     
                                         (21) 

These differential equations in equations (16)-(21) are not in a closed-form expression. 

Therefore, the MLE estimator of the parameter estimate, i.e., ̂  and ˆ ,  can be obtained by 

using numerical optimization with the nlm function in the R program (R Core Team, 2016).  

Table 1. Maximum likelihood estimates, SE, and MSE values under models based on simulated 
data (Parameters: 0.5   and 5  ). 

Distributions n  
0.5   

 

5   

Estimates SE MSE 
 

Estimates SE MSE 

dT-TPL  

( , , ,a b  ) 

1, 5a b   

20 0.2171 0.0513 0.1326 
 

2.3787 2.1801 101.9256 
50 0.3591 0.0280 0.0592 

 
3.6834 1.2353 78.0323 

100 0.3936 0.0163 0.0378  4.2341 0.7496 56.7701 
200 0.4385 0.0083 0.0174  4.7218 0.4514 40.8250 
500 0.4780 0.0030 0.0049  4.9526 0.1494 11.1658 
1000 0.4893 0.0015 0.0025 

 
5.0420 0.0860 7.3910 

lT-TPL  

( , ,a  ) 

1,a b    

20 0.6312 0.0202 0.0254 
 

5.7802 3.9994 320.5091 
50 0.6280 0.0122 0.0238 

 
6.1164 1.8965 181.0903 

100 0.6326 0.0076 0.0234  6.4807 1.2412 156.2369 
200 0.6381 0.0038 0.0220  6.7860 0.7084 103.5645 
500 0.6427 0.0015 0.0214  7.3975 0.3425 64.3930 
1000 0.6447 0.0004 0.0211 

 
7.5028 0.1533 29.7569 

tT-TPL  

( , ,b  ) 

 

0, 5a b   

20 0.2719 0.0506 0.1032 
 

4.1138 2.7196 148.7085 
50 0.3691 0.0252 0.0489 

 
4.7495 1.6198 131.2441 

100 0.4391 0.0127 0.0198  5.0256 1.0620 112.7745 
200 0.4737 0.0060 0.0079  5.3574 0.6547 85.8650 
500 0.4938 0.0021 0.0023  5.6355 0.2384 28.8174 
1000 0.4971 0.0011 0.0012 

 
5.8564 0.1027 11.2816 
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 Simulation study 
Simulation study is illustrated to show the efficiency of maximum likelihood estimation 

(MLE). As an illustration, the sample data generated from a T-TPL random variable with the 
specified parameters of 3 cases has been displayed in Table 1  for the sample sizes ( n ) are 20, 

50, 100, 200, 500, and 1,000. In each situation, the parameters are estimated via the MLE with 
nlm function in R (R Core Team, 2016) of 1000 replications. Suppose the estimated parameter 

of   is ˆ ,  then the bias, standard deviation, and standard error of ˆ ,  are computed by the 

formulas: 
1000

1
ˆ ˆ 1000,tt
 


  ˆBias( ) ,     

1000 2

1
ˆ ˆ ˆSD( ) ( ) / 999,tt
  


   and ˆ ˆSE( ) SD( )/,   

respectively. The mean squared error (MSE), i.e., 2ˆ ˆ ˆMSE( ) Var( ) Bias ( ),     is used for the 

criteria to compare the efficiency of the MLE of each parameter.  

From the results in Table 1, the MLE for estimating   and   gives the minimum MSE 

value. The MSE of each estimated parameter trends to decrease when the sample size is 

increasing. Moreover, the estimate values of each parameter by using MLE method gives the 
biased estimate value from the parameter. Howover, the MLE method gives the estimate value 

that close to the parameter. Thus, the MLE method is used to estimate the parameters of the 
distributions for a real data in application study. 

 
Figure 6. Box plots of the real datasets for application study 

 

Application study 

The first data set is the cancer patient data set, which is an uncensored data set 
corresponding to the remission times (in months) of a random sample of 128 bladder cancer 

patients. Thse data sets were previously studied by Lee and Wang in 2003 (Zea et al., 2012). 

The values of the minimum, mean, and maximum of the remission times are 0.09, 9.37, and 
79.05, respectively. Another, real data set is the Floyd River flood rates for the years 1935–

1973, which appeared in Akinsete et al. (2008). The minimum, mean, and maximum values of 
flood discharge rates are 318, 6771.10, and 71500, respectively. The summary of this data set 

is shown in Figure 6. Estimates of the parameters of the T-TPL distribution, Akaike Information 
Criterion (AIC), Consistent Akaike Information Criterion (AICC), Bayesian Information Criterion 

(BIC), and  KS  test by using value of D  are,  respectively,  given as follows:  
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AIC   2log L 2 ,p   

AICC AIC   2 ( 1) / ( 1),p p n p     

BIC 2log( ) log( ),L p n    

0D sup ( ) ( ) ,n
x

F x F x    

where n  is the sample size and p  is the number of parameters.  

Based on the results in Tables 2-3, the exponential, Lindley, TPL, truncated (doubly, 
left, right) Lindley, and truncated (doubly, left, right) TPL distributions have been compared 

with the KS test, and it has been found that the rT-TPL ˆ( 0.1066,   6ˆ 3.580 10 ,     79.05)b   

gives a reasonable fit for the data of bladder cancer patients better than other distributions. 

And for real data of the Floyd River flood rates, the dT-TPL 4ˆ( 1.536 10 ,    7ˆ 4.289 10 ,     

318,a  71,500)b   is the best fit for the flood discharge rates. Moreover, the KS-test of the 

exponential, Lindley, and TPL distributions are shown that they can not fit with the data.  

 
 

Table 2. Maximum likelihood estimates and statistic values under models based on real data 
on the bladder cancer data (Zea et al., 2012). 

Distributions 
Maximum likelihood estimates 

-logL AIC AICC BIC 
D 

̂  ̂  â  b̂  (p-value) 

Exponential

( )
 

0.1068 - - - 414.342 830.684 830.716 833.536 0.9453 
(<0.0001) 

Lindley

   ( )
 

0.1960 - - - 419.530 841.060 841.092 843.912 0.9453 
(<0.0001) 

dT-Lindley

  ( , , )a b
 

0.1965 - 0.08 79.05 419.189 844.378 844.572 852.934 0.1144 
(0.0703) 

lT-Lindley

   ( , )a
 

0.1965 - 0.08 - 422.530 849.060 849.156 854.764 0.1165 
(0.0619) 

rT-Lindley

    ( , )b
 

0.1960 - - 79.05 419.185 842.370 842.466 848.074 0.1141 
(0.0713) 

TPL

( , ) 
 

0.1068 1.1701x10-6 - - 414.342 832.684 832.78 838.388 0.9453 
(<0.0001) 

 

  dT-TPL

, , ,a b 
 

0.1075 1.022x10-6 0.08 79.05 413.318 834.636 834.961 846.044 0.0875 
(0.2805) 

 

lT-TPL

, ,a 
 

0.1077 -4.193x10-6 0.08 - 415.844 837.688 837.882 846.244 0.0878 
(0.2767) 

 

 rT-TPL

, ,b 
 

0.1066 -3.580x10-6 - 79.05 413.314 832.628 832.822 841.184 0.0844 
(0.3217) 
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Table 3. Maximum likelihood estimates and statistic values under models based on real data 
about the Floyd river flood rates for the years 1935-1973 (Akinsete et al., 2008) 

Distributions 
Maximum likelihood estimates 

-logL AIC AICC BIC 
D 

̂  ̂  â  b̂  (p-value) 

Exponential

( )
 

0.0001 - - - 382.996 767.992 768.100 769.656 1 
(<0.0001) 

Lindley

   ( )
 

0.0003 - - - 392.649 787.298 787.406 788.962 1 
(<0.0001) 

dT-Lindley

  ( , , )a b
 

0.0003 - 318 71500 392.485 790.970 791.656 795.961 0.2395 
(0.0187) 

lT-Lindley

   ( , )a
 

0.0003 - 318 - 394.485 792.970 793.303 796.297 0.2395 
(0.0187) 

rT-Lindley

    ( , )b
 

0.0003 - - 71500 394.649 793.298 793.631 796.625 0.2406 
(0.0180) 

TPL

( , ) 
 

0.0017 0.3000 - - 634.588 1,273.2 1,273.5 1,276.5 1 
(<0.0001) 

 

  dT-TPL

, , ,a b 
 

1.536x10-4 -4.289x10-7 318 71500 381.121 770.242 771.419 776.896 0.1011 
(0.7831) 

 

lT-TPL

, ,a 
 

0.0003 0.0104 318 - 391.840 789.680 790.366 794.671 0.2288 
(0.0282) 

 

 rT-TPL

, ,b 
 

0.0003 0.1001 - 71500 392.191 790.382 791.068 795.373 0.2395 
(0.0188) 

 

 

Conclusion 
In this work, the doubly, left, and right truncated two-parameter Lindley distributions 

are proposed. Some characteristics of the proposed distributions (i.e., moments, and functions 
of survival, hazard, and quantile) are discussed. The unknown parameters of the proposed 

distributions are estimated by the maximum likelihood estimation. Two real data sets such as 

the bladder cancer patients and the flood discharge rates have been considered to show the 
usefulness of the proposed distributions. The results show that the proposed distributions 

provide a consistently better fit than the other distributions   (i.e.,   the exponential,   Lindley,   
two-parameter Lindley, and truncated-Lindley distributions). We hope that the proposed 

distributions will attract wider application in many areas such as engineering, economics, 

survival, lifetime data analysis, etc. 
 

Acknowledgement 
The author would like to express thanks to the Rajamangala University of Technology 

Thanyaburi for research funding. 

 
References 

Aban, I. B., Meerschaert, M. M., & Panorska, A. K. (2006). Parameter estimation for the 
truncated Pareto distribution. Journal of the American Statistical Association, 101(473), 

270-277. doi: 10.1198/016214505000000411 

Adler, A. (2016). Lambert-W Function. Retrieved October 10, 2016, from https://bitbucket.org/ 
aadler/lamw 

https://en.wikipedia.org/wiki/Quantile
http://dx.doi.org/10.1198/016214505000000411
https://bitbucket.org/


The Journal of Applied Science                                                                                 Vol. 17 No. 1: 19-32 [2018] 
วารสารวทิยาศาสตรป์ระยกุต ์          doi: 10.14416/j.appsci.2018.05.005 

 - 32 - 

 

Ahmed, S. E., Castro-Kuriss, C., Flores, E., Leiva, V., & Sanhueza, A. (2010). A truncated 
version of the birnbaum-saunders distribution with an application in financial risk. 

Pakistan Journal of Statistics, 26, 293-311. 
Ahsanullah, M., Shakil, M., & Kibria, B. M. (2016). Characterizations of continuous distributions 

by truncated moment. Journal of Modern Applied Statistical Methods, 15(1), 316-331. 
Akinsete, A. Famoye, F., & Lee, C. (2008). The beta-Pareto distribution. A Journal of 

Theoretical and Applied Statistics, 42(6), 547-563.  

Dodge, Y. (2003). The Oxford Dictionary of Statistical Terms. Oxford: The Oxford University 
Press. 

Gutenberg, R., & Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the 
Seismological Society of America, 34(4), 185-188. 

Hamasha M. M. (2017), A mathematical approximation of the left-sided truncated normal 

distribution using the cadwell approximation model. Engineering, Technology & Applied 
Science Research, 7(1), 1382-1386. 

Hannon P. M. & Dahiya R. C. (1999), Estimation of parameters for the truncated exponential 
distribution. Communications in Statistics-Theory and Methods, 28(11), 2591-2612. 

Iwueze I. S. (2007), Some implications of truncating the N(1, σ2) distribution to the 
left at zero, Journal of Applied Sciences, 7(2), 189-195. 

Johnson, A. C. (2001), On the truncated normal distribution: Characteristics of singly- and 
doubly-truncated populations of application in management science (Ph.D. Dissertation) 
Stuart Graduate School of Business, Illinois Institute of Technology, Illinois. 

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate Distributions, Volume 
1 (2nd Ed.). New York: Wiley-Interscience. 

Jorda, P. (2010). Computer generation of random variables with Lindley or Poisson−Lindley 

distribution via the Lambert W function. Mathematics and Computers in Simulation, 81, 
851-859. 

Lindley, D. V. (1985). ‘Fiducial distributions and Bayes’ theorem. Journal of the Royal Staistical 
Society, Series B, 20(1), 102-107. 

R Core Team. (2016). R: A Language and Environment for Statistical Computing, R Foundation 
for Statistical Computing. Vienna, Austria. Retrieved October 10, 2016, from 
https://www.R-project.org/ 

Shanker, R., Sharma, S., & Shanker R. (2013). A two-parameter Lindley distribution for 
modeling waiting and survival times data. Applied Mathematics, 4(2), 363-368. doi: 

10.4236/am.2013.42056 
Singh, S. K., Singh, U., & Sharma, V. K. (2014). The truncated Lindley distribution:  inference 

and application. Journal of Statistics Applications & Probability, 3(2), 219-228. 

Sun X. D., Tao X. X & Liu C. Q. (2013), Finite fault modelling for the Wenchuan earthquake 
using hybrid slip model with truncated normal distributed source parameters. Applied 
Mechanics and Materials, 256-259, 2161-2167. 

Zaninetti, L., & Ferraro, M. (2008). On the truncated Pareto distribution with applications. 

Central European Journal of Physics, 6(1), 1-6. doi: 10.2478/s11534-008-0008-2 

Zea, L. M., Silva, T. B., Bourguignon, M., & Santos, A. M. (2012). The beta exponentiated 
Pareto distribution with application to bladder cancer susceptibility. International 
Journal of Statistics and Probability, 1(2), 8-19. doi:10.5539/ijsp.v1n2p8 

Zhange, T., & Xie, M. (2011). On the upper truncated Weibull distribution and its reliability 

implications. Reliability Engineering & System Safety, 96(1), 194-200. doi: 10.1016/ 
j.ress.2010.09.004 

 

https://www.tandfonline.com/author/Hannon%2C+Patrick+M
https://www.tandfonline.com/author/Dahiya%2C+Ram+C
https://www.tandfonline.com/toc/lsta20/current
http://ascidatabase.com/author.php?author=Iheanyi%20S.&last=Iwueze
https://www.r-project.org/
http://dx.doi.org/10.4236/am.2013.42056
https://www.scientific.net/AMM
https://www.scientific.net/AMM

